سایت شخصی صادق سلمانی

ولتست، یادگیری ماشین، پایتون، فرازآوری مصنوعی

سایت شخصی صادق سلمانی

ولتست، یادگیری ماشین، پایتون، فرازآوری مصنوعی

سایت شخصی صادق سلمانی

مطالبی که در این سایت نوشته می‌شود به منزله تخصص من در آن‌ها نمی‌باشد، بلکه صرفاً آغازی است در مسیری طولانی برای یادگیری بهتر و عمیق‌تر.

آخرین نظرات
  • ۱۶ خرداد ۹۸، ۰۰:۲۳ - محمد
    عالی
  • ۱۴ آذر ۹۷، ۱۸:۰۶ - خ
    عالی
  • ۸ آذر ۹۷، ۲۰:۰۷ - محمد علی
    احسنت

۱۳۳ مطلب با کلمه‌ی کلیدی «مهندسی نفت» ثبت شده است

برای اینکه بتوانیم مفهوم فشار موئینگی را به صورت خلاصه اما دقیق یاد بگیریم، توضیحات را به 6 بخش تقسیم کرده‌ام:


1- زمانی می توانیم از مفهوم فشار موئینگی استفاده کنیم که دو سیال غیر قابل امتزاج بر روی سطح یک جسم جامد (مانند سطح سنگ) وجود داشته باشد. بنابراین زمانی که فقط یک فاز وجود داشته باشد (نفت یا آب یا گاز)، فشار موئینگی معنایی ندارد.


2- بین سطح سنگ و سیالی که با آن در تماس است، نیروهای چسبندگی (adhesive forces) وجود دارد. زمانی که دو سیال غیرقابل امتزاج در داخل ظرفی وجود دارند، آنها نیروهای چسبندگی متفاوتی را به سطح ظرف اعمال می‌کنند. سیالی که بتواند نیروی بیشتری را بر سطح ظرف اعمال کند، احتمال بیشتری وجود دارد که بر روی سطح ظرف پخش شود. به این سیال، more wetting phase و به سیال دیگر، less wetting phase می‌گویند. به شکل زیر دقت کنید:


3- سیالی که خاصیت ترشوندگی بیشتری دارد (more wetting phase) مدام در حال رقابت با سیالی است که خاصیت ترشوندگی کمتری دارد (less wetting phase) تا بتواند در آن نفوذ پیدا کند، ولی سیالی که خاصیت ترشوندگی کمتری دارد مانع از این کار می‌شود. این رقابت تا زمانی ادامه پیدا می‌کند تا دو سیال به حالت تعادل برسند. اگر یک لوله موئینه را وارد سطح مشترک دو سیال غیرقابل امتزاج (مانند آب و هوا) کنیم، آب (سیالی که خاصیت ترشوندگی بیشتری دارد) طبق شکل زیر از لوله موئین بالا می‌رود:


4- قدرت نیروی چسبندگی بین سطح جامد و سیال با تغییر انحنای سطح جامد تغییر می‌کند. هرچه مقدار شعاع انحنا کوچک‌تر باشد، نیروی چسبندگی بزرگ‌تر خواهد بود. اگر دو عدد لوله موئینه با شعاع‌های متفاوت را در یک محفظه بزرگ آب قرار دهیم، ارتفاع آب در لوله با شعاع کمتر، بیشتر خواهد بود. ارتفاع آب در هر یک از این دو لوله موئینه را فشار موئینگی (Capillary Pressure) می‌نامند. در واقع فشار موئینگی، فشار مورد نیاز برای راندن سیال به ارتفاعات بالاتر در لوله موئینه می‌باشد.

در اینجا، یک ظرف بزرگ آب، دو عدد لوله موئینه با سایزهای متفاوت و دو سیال (آب و هوا) داریم که آب در ظرف قرار دارد و هوا در بالای آن. بین آب و هوایی که در ظرف بزرگ قرار دارند، یک فشار موئینگی وجود دارد. به دلیل اینکه شعاع انحنای ظرف خیلی بزرگ‌تر از لوله موئینه می‌باشد، مقدار فشار موئینگی بسیار کوچک است. بنابراین فرض می‌کنیم که مقدار این فشار موئینگی برابر صفر است و سطح آب در ظرف را به عنوان «سطح آزاد آب» (Free Water Level) در نظر می گیریم که به عنوان سطح مبنا استفاده می‌شود. اختلاف ارتفاع آب در لول‌های موئینه مختلف، فشار موئینگی بین آب و هوا هستند. 


5- در واقعیت (مثلاً سیستم آب - نفت)، به جای لوله‌های موئینه، حفرات با سایزهای متفاوتی وجود دارند که به هم متصل شده‌اند و هر یک فشار موئینگی مخصوص خود را دارند. در این مورد خاص، سطح آزاد آب (FWL) برابر با سطح آب در بزرگ‌ترین حفره می‌باشد. در عمق‌های پایین‌تر از FWL فقط آب می‌تواند حرکت کند. حفرات با شعاع کمتر، فشار موئینگی بیشتری دارند که باعث می‌شود ارتفاع آب در آن‌ها بیشتر شود. ارتفاع آب در کوچک‌ترین حفره را Oil Down To می‌نامند. بالاتر از این سطح، آب نمی‌تواند حرکت کند ولی نفت حرکت می‌کند. در حقیقت بالاتر از ODT فقط نفت وجود دارد. فاصله بین FWL و ODT را Transition Zone می‌نامند و در شکل زیر نیز نشان داده شده است:


6- اگر چاه در زیر FWL مشبک کاری شود، تنها آب تولید می‌کند. اگر در بالای ODT مشبک کاری شود، تنها نفت تولید می‌کند. و اگر بین این دو سطح مشبک کاری شود، ترکیبی از نفت و آب تولید می‌کند.


منبع:

https://www.linkedin.com/pulse/20141130081815-156821532-illustration-of-capillary-pressure-concept?trk=mp-reader-card

۰ نظر ۲۰ خرداد ۹۵ ، ۱۶:۲۵
صادق سلمانی

برای سیستم‌های چندفازی، نفوذپذیری نسبی نقش مهمی در تعریف بهره‌دهی چاه ایفا می‌کند. رفتار جریان سیستم‌های گاز میعانی با توجه به وابستگی شدید نفوذپذیری نسبی در نزدیک چاه به سرعت و کشش سطحی، پیچیده‌تر است. پدیده‌های اینرسی منفی (Negative Inertia) و کوپلینگ مثبت (Positive Coupling) در ناحیه نزدیک چاه که در سرعت‌های بالای جریان رخ می‌دهند، بر روی بهره‌دهی چاه گاز میعانی تأثیر می‌گذارند. در ادامه اثر این پدیده‌ها بررسی می‌شود.


اثر اینرسی:

در نرخ‌های بالای تولید، علاوه بر مؤلفه نیروی ویسکوز حاضر در معادله دارسی، یک نیروی اینرسی نیز به شتاب ذرات سیال در گذر از فضاهای خالی بر جریان سیال عمل می‌کند. در دهانه چاه که سرعت بالاترین مقدار را دارد، نفوذپذیری نسبی ممکن است با اثرات جریان غیردارسی کاهش یابد. کاهش نفوذپذیری مؤثر در سرعت‌های بالا به علت اینرسی منفی (جریان غیردارسی) برای اولین بار توسط Forchhiemer معرفی شد. از معادله Forchhiemer برای مدل کردن جریان دارای سرعت بالا (غیر دارسی) استفاده می‌شود:

اثر کوپلینگ مثبت:

اثر کوپلینگ مثبت به بهبود نفوذپذیری نسبی با افزایش سرعت و یا کاهش کشش سطحی اشاره دارد. از لحاظ تئوری و تجربی ثابت شده است که اثر کوپلینگ مثبت به علت جریان همزمان فاز گاز و میعانات با باز و بسته شدن متناوب مسیر عبور گاز توسط میعانات در سطح حفره می‌باشد. میکرومدل جامی‌الاحمدی و همکاران نشان داد زمانی که برخی از حفره‌ها توسط میعانات پر شده بودند، گاز و میعانات هر دو از طریق حفره‌ها، جریان دارند. در برخی از نقاط، فاز میعانات به شکل یک پل در گلوگاه حفره‌ها در می‌آید و مسدود کننده راه جریان گاز است. در این مرحله، به نظر می‌رسد گاز در پشت پل میعانات به تدریج دچار ساخت فشار می‌شود تا زمانی که بر مقاومت در برابر جریان غلبه می‌کند و راه خود را از طریق پل مایع باز می‌کند.


تقابل اینرسی و کوپلینگ مثبت:

این دو پدیده مربوط به سرعت‌های بالا بوده و در خلاف جهت یکدیگر عمل می‌کنند. پدیده کوپلینگ مثبت تراوایی نسبی گاز و در نتیجه بهره‌دهی چاه را افزایش می‌دهد، در حالیکه پدیده اینرسی تراوایی نسبی گاز را کاهش می‌دهد و در نتیجه این پدیده تمایل دارد که بهره‌دهی چاه را کمتر کند. در واقع این دو اثر مخالف همواره در حال رقابت هستند.

کار تجربی انجام شده توسط Henderson و همکاران نشان می‌دهد که اثر اینرسی برای مغزه‌های 100 درصد اشباع شده با گاز غالب است. با این حال زمانی که میعانات شکل می‌گیرد، اثر اینرسی کاهش می‌یابد. آن‌ها نشان دادند که افزایش سرعت در اشباع بالای میعانات، نفوذپذیری نسبی گاز را به علت کوپلینگ مثبت بهبود می‌بخشد، اما برای اشباع کم میعانات، همین تغییر سرعت باعث کاهش نفوذپذیری نسبی گاز به علت اینرسی خواهد شد.


منابع:

1. کتاب "مهندسی مخازن گاز میعانی" / تالیف: دکتر وطنی، دکتر صدایی و مهندس شیدایی مهر

2. کتاب "مهندسی مخازن گاز میعانی" / تالیف: دکتر خاکسار و مهندس محمدی

۰ نظر ۲۰ خرداد ۹۵ ، ۱۴:۲۰
صادق سلمانی

وقتی میانگین مسیر آزاد (mean free path) گاز بزرگ‌تر از قطر منافذی باشد که از آن عبور می‌کند، انرژی جنبشی تصادفی گاز موجب تسریع حرکت و جنبش مولکول‌های گاز در داخل منافذ یا لغزش مولکول‌های گاز بر روی دیواره منافذ می‌شود. این لغزش (Slippage) باعث می‌شود که مولکول‌های گاز با سرعت بیشتری در جهت انتقال خود، حرکت کنند. این پدیده را اثر کلینکنبرگ (Klinkenberg Effect) می‌نامند و باعث می‌شود نفوذپذیری بدست آمده توسط گاز، بزرگ تر از نفوذپذیری مطلق نمونه باشد.

نکته: میانگین مسیر آزاد گاز با افزایش فشار کاهش می‌یابد و زمانی که گاز در فشار بی‌نهایت مایع می شود، از بین می‌رود.

نکته: میانگین مسیر آزاد گاز تابعی از سایز مولکول های گاز و همچنین دانسیته گاز می باشد.

کلینکنبرگ نشان داد که فاز سیال جریانی مورد استفاده در آزمایشات اندازه‌گیری نفوذپذیری بر نتایج آزمایشات تأثیرگذار می‌باشد، به طوریکه نفوذپذیری اندازه‌گیری شده بوسیله جریان هوا با نفوذپذیری اندازه‌گیری شده بوسیله جریان یک مایع متفاوت خواهد بود. این محقق نشان داد که نفوذپذیری اندازه‌گیری شده یک مغزه با استفاده از جریان هوا همیشه مقداری بزرگتر از نفوذپذیری اندازه‌گیری شده همان مغزه با استفاده از جریان مایع می‌باشد. کلینکنبرگ به این نتیجه رسید که این تفاوت در مقدار نفوذپذیری اندازه‌گیری شده به دلیل متفاوت بودن مقدار سرعت سیالات در دیواره‌های مجراها (خلل و فرج) می‌باشد، زیرا سرعت مایعات در نزدیکی دیواره‌های خلل و فرج ناچیز و در حد صفر ولی سرعت گازها غیرصفر می‌باشد. به عبارتی دیگر، سرعت گازها بر روی سطح دیواره‌های خلل و فرج به صورت لغزشی می‌باشد. وجود این لغزش بر روی سطوح دیواره‌های خلل و فرج موجب می‌شود که در یک اختلاف فشار مشخص و یکسان، دبی جریانی گازها بیشتر از دبی جریان مایعات گردد. کلینکنبرگ همچنین دریافت که برای یک محیط متخلخل مشخص، با افزایش فشار متوسط، نفوذپذیری اندازه‌گیری شده کاهش خواهد یافت.

با کاهش فشار متوسط >> میانگین مسیر آزاد گاز بزرگتر از قطر منافذ می شود >> لغزش گاز بر روی دیواره های خلل و فرج >> اثر کلینکنبرگ

نکته: فشار متوسط به عنوان میانگین فشار ورودی و خروجی تعریف می‌شود.

همان‌گونه که در شکل زیر نشان داده شده است، اگر نفوذپذیری اندازه‌گیری شده بوسیله جریان گاز بر حسب معکوس فشار متوسط رسم شود، یک خط راست بدست خواهد آمد. چنانچه این خط راست تا نقطه فشار متوسط بی‌نهایت امتداد داده شود، نفوذپذیری مایع یا همان نفوذپذیری مطلق حاصل خواهد شد.


کلینکنبرگ معتقد بود که شیب خط (C) تابعی از عوامل زیر است:

  • نفوذپذیری مطلق
  • نوع گازی که در آزمایشات اندازه‌گیری نفوذپذیری به کار می‌رود
  • میانگین شعاع موئینگی سنگ


اگر فشار متوسط جریان گاز یا مایع زیاد باشد:

  • جریان دارسی مشاهده می شود
  • سرعت جریان در دیواره های خلل و فرج برابر صفر است (مانند شکل زیر)
                                                     


اگر فشار متوسط جریان سیال کم باشد:
  • جریان غیردارسی مشاهده می شود
  • سرعت جریان در دیواره های خلل و فرج غیرصفر می باشد (مانند شکل زیر)

منابع: 
1-کتاب طارق احمد
2- کتاب "آزمایشگاه خواص سنگ و سیال مخزن"، نوشته احمد فریدونی، محمدتقی رضایی و مسعود فریدونی - با همکاری دکتر عباس هلالی زاده
۴ نظر ۰۹ خرداد ۹۵ ، ۲۰:۳۹
صادق سلمانی

نمونه‌گیری ته‌چاهی (Bottom-hole Sampling)

نمونه‌های ته‌چاهی معمولاً در زمان حفاری چاه‌های اکتشافی و توصیفی در میادین در حال توسعه گرفته می‌شوند. نمونه‌های ته‌چاهی یا در زمان انجام تست ساق مته (DST) که چاه به صورت موقت جریان می‌یابد انجام می‌شود یا با فرستادن ابزارهای سیم (Wire-line Tools) به درون چاه اجرا می‌شود.

مهم‌ترین ابزارهایی که امروزه در صنعت نفت برای نمونه‌گیری سیال ته‌چاهی استفاده می‌شوند عبارتند از:

  • ابزار RFT یا همان Repeat Formation Tester
  • ابزار MDT یا همان Modular Dynamics Formation Tester
  • ابزار XPT یا همان Express Pressure Test

نمونه‌ای از ابزار MDT در زیر نشان داده شده است:


                   


این ابزارها که در واقع هر یک از آن ها نوع پیشرفته دیگری است، شامل ادواتی هستند که ایتدا به دیواره چاه می‌چسبند سپس یک میله کاوشگر (Probe) تا اندازه محدودی در سازند فرو می‌رود و به مانند یک سرنگ از یک نقطه مشخص سیال مخزن را نمونه‌گیری می‌کند. مهم‌ترین عامل در موفقیت بدست آوردن یک نمونه شاخص، تک فازی نگه داشتن سیال در خلال نمونه گیری و انتقال آن است. این کار را می‌توان با کنترل دقیق و حفظ فشار نمونه‌گیری در بالای فشار نقطه شبنم و نزدیک به شرایط مخزن تا بیشترین حد ممکن و حذف فرایند انتقال و جابجایی طولانی و نادرست نمونه در سطح، انجام داد.

تمیزسازی سیال نمونه‌گیری شده برای از بین بردن آلاینده‌های محلول در آن از قبیل گل حفاری پایه روغنی و مواد بازدارنده تشکیل هیدرات، ضروری می‌باشد. زمانی که فشار مخزن زیر نقطه شبنم یا نزدیک به آن باشد، بدست آوردن نمونه ته‌چاهی اگر غیرممکن نباشد، کار بسیار دشواری خواهد بود.


منبع: کتاب «مهندسی مخازن گاز میعانی»، نوشته دکتر وطنی، دکتر صدایی و مهندس شیدایی مهر

برای کسب اطلاعات بیشتر به این کتاب مراجعه کنید.

۰ نظر ۰۴ خرداد ۹۵ ، ۱۳:۵۶
صادق سلمانی

از نظر ریاضی پیچیدگی استفاده از یک معادله حالت (EOS) در شبیه‌سازی ترکیبی (مثلاً اکلیپس300) به مراتب بیشتر از استفاده از یک مدل نفت سیاه ساده است و این پیچیدگی منجر به سرعت پایین (زمان لازم برای حل معادلات flash بسیار زیاد و در حد زمان لازم برای حل معادلات جریان می‌باشد) اجرای شبیه‌ساز ترکیبی (Compositional simulator) در مقایسه با شبیه‌ساز نفت سیاه (black oil simulator) خواهد شد. لذا استفاده از تعداد بهینه و اقتصادی اجزاء در شبیه‌سازی ترکیبی با به کار بردن شبه‌جز (Pseudo Component) ضروری به نظر می‌رسد.

تعداد اجزاء استفاده شده برای شبیه‌سازی یک سیال به دو عامل موانع محاسباتی و سطح دلخواه دقت مورد نظر از EOS، بستگی دارد. تعادلی بین این دو عامل برای تعیین تعداد نهایی اجزاء برای حل مسأله، نیاز است. 

آنالیز اولیه ترکیب سیال معمولاً شامل 13 تا 20 جز و گاهی اوقات بیشتر خواهد بود. برای رسیدن به بهترین نتایج، استفاده از دستورالعمل‌های مرحله به مرحله موجود برای ساختن شبه‌جز پیشنهاد می‌شود که بوسیله آن‌ها ویژگی‌های مختلف شبه‌جز به طور مداوم توسعه می‌یابد. هدف از هر شبه‌جز هرچه نزدیک‌تر نگه داشتن پیش‌بینی PVT به آنالیز کامل اولیه است.

معیارهای ما برای گروه‌بندی عبارتند از:

  • خواص یکسان، مانند وزن مولکولی (MW)
  • روند نمودار لگاریتمk بر حسب p یکسان باشد. (منظور از k، تعادل است)
  • عدم حساسیت آزمایش‌ها به گروه‌بندی 

مبنای اصلی ما برای گروه‌بندی این است که اجزایی که وزن مولکولی یکسانی دارند را در یک گروه قرار دهیم. مثلاً بهتر است که C7 را با C8 در یک گروه قرار دهیم و نه با C2 ؛ چون انتظار می‌رود که خواص C7 و C8 مشابه هستند ولی خواص C7 و C2 متفاوت. یکی دیگر از گروه‌بندی‌هایی که واضح است عبارت است از گروه‌بندی iC4 و nC4 در یک گروه و iC5 و nC5 در گروهی دیگر. 

استثناء: با وجود اینکه وزن مولکولی N2 (وزن مولکولی=28) نزدیک به C2 (وزن مولکولی=20) است ولی ما N2 و C1 (وزن مولکولی=16) را در یک گروه و CO2 (وزن مولکولی=44) و C2 را در گروه دیگری قرار می‌دهیم.

سوال: چرا ما CO2 و C3 (وزن مولکولی=44) را با وجود اینکه وزن مولکولی یکسانی دارند در یک گروه قرار نمی‌دهیم؟

جواب: یکی از معیارهای ما برای قرار دادن اجزای با خواص یکسان در یک گروه این است که آن اجزا وزن مولکولی یکسانی داشته باشند. ولی یک نکته در اینجا وجود دارد که عبارت است از: مولکلول‌های هیدروکربنی که وزن مولکولی یکسانی دارند، خواص یکسانی نیز خواهند داشت. ولی این اصل را نمی‌توان برای مولکول‌های غیرهیدروکربنی مانند N2 به کار برد.

تعداد شبه‌جزء‌های گروه‌بندی شده که برای شبیه‌سازی ترکیبی مورد نیاز است بستگی به فرایندی دارد که می‌خواهیم آن را شبیه‌سازی کنیم:

  • برای فرایند تخلیه، 2 تا شبه‌جز می‌تواند کافی باشد (مدل نفت سیاه).
  • برای فرایند امتزاج‌پذیری، ممکن است به بیش از 10 جزء نیاز باشد.
در کل، به نظر می‌رسد که برای توصیف رفتار فازی، 4 تا 10 جزء باید کافی باشد.

نکته: دقت کنید که نمودار فازی باید قبل و بعد از گروه‌بندی شکل یکسانی داشته باشد و این مورد را حتما چک کنید و سپس به سراغ رگراسیون بروید.


منابع:

1. جزوه PVTi and ECLIPSE300 شرکت شلمبرژه (صفحه 77)

2. منبع: کتاب «مهندسی مخازن گاز میعانی»، نوشته دکتر وطنی، دکتر صدایی و مهندس شیدایی مهر (صفحه 312)

۰ نظر ۲۴ ارديبهشت ۹۵ ، ۱۰:۲۲
صادق سلمانی

ترشوندگی سنگ مخزن به عوامل متعددی از قبیل موارد زیر بستگی دارد:

  • جنس و مواد تشکیل دهنده سنگ مخزن
  • هندسه فضاهای خالی سنگ
  • ترکیب و مقدار نفت و آب
  • دما و فشار
  • مکانیزم های زمین شناسی
  • تغییرات اشباع، فشار و ترکیب اجزا در طول تولید

برای تعیین ترشوندگی مخازن، ارزیابی خواص سنگ و سیال ضروری است. بر اساس نحوه پخش شدن سیالات بر روی سطح و زاویه تماس آن‌ها، سنگ‌های مخزن به دو دسته کلی آب-دوست (water wet) و نفت-دوست (oil wet) تقسیم می‌شوند. سنگ‌هایی که نه آب-دوست هستند و نه نفت-دوست، میانه (intermediate) یا خنثی (neutral) نامیده می‌شوند. در حالت ترشوندگی میانه کلیه قسمت‌های سطح سنگ ترجیح کم اما برابری برای آب-دوست یا نفت-دوست بودن دارند.

اندازه‌گیری ترشوندگی سنگ مخزن با استفاده از مغزه‌های گرفته شده از مخزن در آزمایشگاه انجام می‌شود و شدیداً به نحوه حمل مغزه وابسته است. مغزه‌ها باید طوری به آزمایشگاه منتقل شوند که خواص سطحی آن‌ها حفظ شود.

نکته: اغلب مخازن کربناته نفت-دوست هستند. در حالیکه در میان مخازن ماسه سنگی بررسی شده، این مخازن تقریباً به طور برابر آب-دوست یا نفت-دوست هستند.

سطح سنگ مخزن، تشکیل شده از کانی‌های زیادی با شیمی سطح و خواص جذب متفاوتی است که ممکن است سبب تغییراتی در ترشوندگی شوند. در حقیقت ممکن است اجزای نفت در قسمت‌هایی از سنگ جذب آن شوند و در قسمت‌هایی جذب نشوند. به همین دلیل مفهوم ترشوندگی جزئی (fractional wettability) یا ترشوندگی ناهمگن (heterogeneous wettability) یا نقطه‌ای (spotted wettability) توسط بسیاری از محققین پیشنهاد شده است. در این نوع ترشوندگی، قسمت‌هایی از سنگ شدیداً نفت-دوست هستند، در حالیکه قسمت‌های دیگر شدیداً آب-دوست هستند.

ترشوندگی مخلوط (mixed wettability): در این حالت حفرات کوچک توسط آب پر شده‌اند و آب-دوست هستند، در حالیکه حفرات درشت‌تر نفت-دوست هستند. بنابراین، نفت با یک اشباع بسیار کمی جابجا می‌شود که باعث بوجود آمدن اشباع نفت پسماند بسیار کم خواهد شد.

شرایط ترشوندگی مخلوط زمانی اتفاق می‌افتد که نفت به صورت یک فیلم مواد آلی فقط بر روی آن دسته از سطوحی که با نفت در ارتباط مستقیم هستند، رسوب کند و بر سطحی که با آب پوشیده شده‌اند، رسوب نکرده باشد.


منبع: کتاب «مهندسی مخازن گاز میعانی»، نوشته دکتر وطنی، دکتر صدایی و مهندس شیدایی مهر

برای کسب اطلاعات بیشتر به این کتاب مراجعه کنید.

۰ نظر ۲۳ ارديبهشت ۹۵ ، ۱۶:۱۲
صادق سلمانی

ترشوندگی یکی از خواصی است که ما قادر به اندازه گیری مستقیم آن در مخزن نیستم؛ یعنی اینکه نمی توانیم یک ابزاری را به داخل چاه بفرستیم و مقدار ترشوندگی را در شرایط مخزن محاسبه کنیم. در حقیقت ما فقط قادر به تخمین کیفی مقدار ترشوندگی هستیم.

ترشوندگی تأثیر زیادی بر روی نفوذپذیری نسبی، فشار موئینگی، بازدهی فرایند سیلاب زنی، ضریب بازیافت، اشباع نفت باقیمانده، اشباع آب کاهش نیافتنی، خواص الکتریکی سنگ مخزن و محاسبات نفت در جا دارد. 


تعریف ترشوندگی:

فرض کنیم که دو سیال غیر قابل امتزاج (برای مثال آب و نفت) بر روی سطح یک سنگ قرار دارند. تمایل یک سیال برای پخش شدن و یا چسبیدن بر روی سطح سنگ، در حضور سیال دیگر را ترشوندگی می نامند. ترشوندگی نقش مهمی را در تولید نفت و گاز ایفا می کند زیرا نه تنها توزیع اولیه سیالات را تعیین می کند بلکه عامل مهمی در فرایند جریان سیال در سنگ مخزن است. درجه ترشوندگی جامدات بوسیله مایعات معمولاً با توجه به زاویه تماسی که سطح مایع-مایع با جامد می سازد، اندازه گیری می شود.

در محیط متخلخل مخازن هیدروکربنی، ترشوندگی به عنوان یک عامل مهم جهت کنترل مکان، جریان و توزیع سیالات در مخزن شناخته می شود. ترشوندگی یک سیستم (که شامل آب سازندی، نفت خام و سنگ می باشد) تأثیر زیادی بر روی جریان سیال در مدت بازیافت نفت می گذارد. 

یک قطره سیال بر روی یک سطح صاف جامد می تواند شکل های مختلفی به خود بگیرد. شکل مربوط با توجه به ترشوندگی سطح، می تواند مسطح یا به شکل یک صدف باشد. شکل زیر خاصیت ترشوندگی یک سطح جامد را نشان می دهد. در صورت وجود دو سیال آب و هوا، آب فاز تر و برای هوا و جیوه، هوا فاز تر است.

معمولاً از زاویه تماس به عنوان معیاری برای تعیین ترشوندگی استفاده می شود. در حالت سیال تر، زاویه تماس (تتا) از 90 درجه کوچک تر است. اگر زاویه تماس بزرگ تر از 90 درجه باشد، سیال غیرتر خواهد بود.

در حدود 150 سال قبل Young زاویه تماس را به صورت پیامدی از تعادل استاتیک بین یک قطره مایع بر روی سطح صاف یک جامد تعریف کرد. قطره مایع به دلیل کشش سطحی (Interfacial Tension) که بر روی آن اثر می کند، شکل مشخصی به خود می گیرد. این تنش ها عبارتند از:


کشش سطحی و در نتیجه زاویه تماس به دما بستگی دارد. در دمای اتاق کشش سطحی بین آب و هوا، 0.073N/m و بین نفت و آب حدود 0.03N/m است.


منبع: کتاب «مهندسی مخازن گاز میعانی»، نوشته دکتر وطنی، دکتر صدایی و مهندس شیدایی مهر

۳ نظر ۲۳ ارديبهشت ۹۵ ، ۱۵:۴۲
صادق سلمانی

نمونه گیری سطحی


در نمونه گیری سطحی، نمونه ها را از دو قسمت می توانیم تهیه کنیم:

  • از خط لوله جریان، قبل از چوک؛ که این نمونه ها را نمونه سر چاهی (well head sample) می نامند.
  • از جریان نفت و گاز مربوط به تفکیک گر اول؛ که این نمونه ها را نمونه سطحی (separator sample) می نامند.
نمونه گیری سطحی معمولاً در طی عملیات DST یا Production Test صورت می گیرد. 

برای اینکه بتوانیم یک نمونه که نماینده مخزن باشد بدست آوریم، نیاز به شرایط زیر داریم:

  • باید چاه را از سیالاتی که در زمان حفاری و تحریک چاه هرز رفته اند، پاک کنیم.
  • دبی چاه بر حسب فشار باید به ثبات برسد.
1- نمونه گیری سر چاهی (Well Head Sampling):
در این نوع از نمونه گیری، ما نمونه را از خط جریان چاه و آن هم قبل از چوک تهیه می کنیم. این روش کمتر معمول است ولی به هر حال یک روش ارزشمند و جایگزین برای separator sampling می باشد. اگر سیال در شرایط دما و فشار سر چاهی تک فاز باشد، آنگاه نتایج این نوع نمونه گیری قابل اعتماد هستند. مشکل این روش این است که باید بدانیم که سیال در نقطه نمونه گیری، تک فاز است.

2- نمونه گیری سطحی (Separator Sampling):
نمونه گیری سطحی، مستلزم اندازه گیری همزمان و دقیق دبی های نفت و گاز مربوط به تفکیک گر می باشد؛ چرا که در این روش، نمونه ها را از تفکیک گر بدست می آوریم. تفکیک گرها ممکن است چندمرحله ای باشند؛ معمولاً نمونه گیری را از تفکیک گر مرحله اول انجام می دهیم.

اصلی ترین نقاط برای گرفتن نمونه گاز و میعانات در شکل زیر نمایش داده شده اند؛ نقطه B برای گاز و نقطه C برای نفت. علاوه بر آن، دو نقطه دیگر (D و E) نیز تعیین شده است. این دو نقطه احتمالاً برای چک کردن نمونه های گرفته شده از نقاط اصلی (B و C) هستند. 


  • تعیین میزان دبی باید دقیق باشد. بنابراین، تجهیزات باید در شرایط عالی باشند و توسط افرادی که به طور کامل آموزش دیده شده اند، اداره شوند.
  • در طول نمونه گیری، شرایط تفکیک گر نباید تغییر کند.
  • نقطه نمونه گیری برای گاز و میعانات باید به درستی انتخاب شود تا از نمونه های گاز بسیار غنی (rich gas) جلوگیری شود.
  • دبی چاه باید به اندازه کافی کم باشد تا فشار ته چاهی بالاتر از فشار نقطه شبنم باشد، و به اندازه کافی زیاد باشد تا بتواند سیال را از ته چاه به بالا بفرستد؛ جلوگیری از تشکیل میعانات در اطراف دهانه چاه.
  • ثبت دقیق دبی های گاز و میعانات و همچنین دما و فشار تفکیک گر بسیار مهم می باشد.
  • اندازه گیری گازهای اسیدی بویژه گاز H2S در محل چاه بسیار مهم است؛ چرا که اینچنین گازهایی در طول انجام تست های آزمایشگاهی به ظروف جذب می شوند.
  • نمونه ها را چک کنیم که ببینیم نشتی دارند یا خیر.
  • بسته بندی مناسب و حمل و نقل نمونه ها مهم هستند.
اگر در هر کدام از موارد بالا دچار اشتباه و خطایی شویم، ریسک اینکه نمونه گرفته شده قابل اعتماد نباشد بالا می رود.
با رعایت شرایط بالا، به تعداد کافی از گاز و میعانات تفکیک گر نمونه تهیه می کنیم. آن ها را بسته بنده کرده و به آزمایشگاه منتقل می کنیم. در آزمایشگاه، گاز و میعانات را با یک نسبت درست و اعمال ضریب تصحیح دما، مجدداً ترکیب می کنیم (recombine). مخلوطی که از ترکیب مجدد گاز و میعانات حاصل می شود را به عنوان نماینده ای از سیال مخزن در نظر می گیریم. سپس بر حسب نیازهای مشتری، بر روی recombined sample یک سری آزمایش ها انجام می شود.

منبع: https://www.linkedin.com/pulse/sampling-analysis-gas-condensates-part-i-sampling-nabi-mirzaee
۰ نظر ۲۳ ارديبهشت ۹۵ ، ۰۲:۴۵
صادق سلمانی

نمونه گیری از سیال یک مخزن گاز میعانی معمولاً در سطح چاه و یا ته چاه انجام می شود؛ و هر کدام از آنها معایب و مزایای خود را دارند. صرف نظر از اینکه از کدام روش استفاده می کنیم، هدف اصلی ما بدست آوردن نمونه ای است که بیانگر خواص مخزن باشد (representative sample).

حال سوال این است که «representative sample» چیست؟

هدف هر فرایند نمونه گیری داشتن نمونه ای است که بیانگر خواص مخزن باشد. یک نفر ممکن است که بگوید representative sample یعنی اینکه ترکیب نمونه دقیقاً مشابه ترکیب سیال مخزن باشد. چنین تعریفی مبهم و غیر واقع بینانه است؛ چرا که ترکیب سیال مخزن در طول زمان تغییر می کند.

در دو موقعیت ما برای رسیدن به یک نمونه که بیانگر شرایط مخزن باشد، محدودیت داریم:

  • زمانی که ترکیب سیال مخزن تغییر می کند.
  • زمانی که مخزن در شرایط خط مرزی قرار دارد و هرگونه کاهش فشاری می تواند منجر به تغییر ترکیب سیال مخزن شود (مثلاً زمانی که نزدیک فشار نقطه شبنم باشیم).
بهترین نمونه هایی که بیانگر شرایط مخزن هستند و می توان آنها را نماینده ای از مخزن دانست، آن هایی هستند که در موقعی که سیال مخزن تک فاز است بدست آمده اند. در حقیقت باید سعی کنیم نمونه گیری را زمانی انجام دهیم که سیال مخزن تک فاز است.

دقت کنید که باید بین یک «bad sample» و یک «unrepresentative sample» تفاوت قائل شویم.

زمانی یک «bad sample» داریم که:
  • نمونه را در شرایطی گرفته ایم که دبی گاز و به تبع آن افت فشار زیاد است و این باعث تشکیل میعانات در مخزن می شود؛ در حالیکه ما می توانیم نمونه گیری را در دبی کمتر و افت فشار کمتر و همچنین در بالای نقطه شبنم انجام دهیم.
  • ترکیب مجدد (recombining) گاز و میعانات با نسب نادرستی صورت بپذیرد.
  • نمونه ها آلوده باشند.
زمانی یک «unrepresentative sample» داریم که:
  • نمونه ها را از قسمت هایی از مخرن بگیریم که نماینده ای از خواص مخزن نیستند.
  • نمونه ها را در تحت شرایطی بدست بیاوریم که آن شرایط نماینده ای از شرایط تولید و عملیات نیستند.

منبع: https://www.linkedin.com/pulse/sampling-analysis-gas-condensates-part-i-sampling-nabi-mirzaee
۰ نظر ۲۱ ارديبهشت ۹۵ ، ۱۴:۰۱
صادق سلمانی


زمانی که هیدرورکربن های مخزن وارد حفرات شده اند، ممکن است که در دماهای بالا، برخی از اجزای هیدروکربن شروع به تر کردن سطح برخی از سنگ ها کنند. ترشوندگی یک پدیده پیچیده ای است که به ترکیب سنگ، ترکیب هیدروکربن و ترکیب و PH آب سازند بستگی دارد. برخی اجزای هیدروکربن ها نقش مهمی در این فرایند تر کردن سطح سنگ دارند که عبارتند از: 

  • رزین ها (یا NSO ها: هیدروکربن های شامل نیتروژن (nitrogen)، سولفور (sulphur) و اکسیژن (oxygen))
  • آسفالتین ها
همان گونه که در شکل بالا دیده می شود، در طی فرایند آشام (imbibition)، اشباع آب افزایش می یابد و سپس در طی فرایند تخلیه ثانویه (secondary drainage)، اشباع آب کاهش می یابد. نکته قابل توجه در اینجا این است که مسیر primary drainage با مسیر secondary drainage یکسان نیست و به این پدیده، پسماند (saturation hysteresis) می گویند. دلیل ایجاد این پدیده، تغییر ترشوندگی سنگ است. 

در طی فرایند آشام، اشباع آب افزایش می یابد و در طی فرایند تخلیه، اشباع آب کاهش می یابد.

اشباع آب تأثیر عمده ای بر کنترل ترشوندگی دارد: برای مثال، در یک نمونه که 100 درصد با آب اشباع شده است، به دلیل اینکه هیچ گونه تماسی با هیدروکربن وجود ندارد، نمونه تنها می تواند آب-دوست باشد. به تدریج که اشباع آب کمتر می شود، اجازه دسترسی هیدروکربن به سطح سنگ بیشتر می شود و بنابراین پتانسیل تغییر ترشوندگی بیشتر می شود. هرچه تغییر ترشوندگی بیشتر شود، اثر پدیده پسماند نیز بیشتر می گردد (یعنی اختلاف نسبت به منحنی تخلیه اولیه بیشتر می شود).

ترشوندگی یک عامل کنترل کننده قوی ای برای فشار موئینگی و نفوذپذیری نسبی است. 

اگر فشار در فاز هیدروکربن (Pnw) کاهش یابد، ممکن است آب طی یک فرایند مکش موئینگی (capillary suction) یا "imbibition" یک جریان برگشتی داشته باشد. این فرایند در شکل بالا نشان داده شده است. زمانی که فشار فاز های تر و غیر تر برابر باشند، فشار موئینگی برابر صفر می شود (Pc=Pnw-Pw) و اشباع نفت در این نقطه به این صورت تعریف می شود: اشباع نفت باقیمانده پس از آشام خودبه خودی (Spo). در مواردی که فشار فاز آب افزایش یافته است (Pw>Pnw)، آب بیشتری نمی تواند وارد مغزه شود.

اگر Pw بیشتر از Pnw باشد، آنگاه Pc مقداری منفی دارد و فرایند آشام آب به صورت اجباری صورت می گیرد (مثل اینکه آب را تزریق کرده ایم). قسمتی از منحنی Pc که بیانگر تغییرات اشباع در اثر Pc منفی می باشد را با نام  آشام اجباری (forced imbibition) نمایش می دهند و بسته به ترشوندگی و مکانیسم جابجایی، اشباع نفت ممکن است بیشتر کاهش یابد و سر انجام به مقدار اشباع نفت باقیمانده (Sor) برسد (در برخی از جاها با Sro نیز نمایش می دهند). بنابراین اشباع نفت باقیمانده برابر با مجانب منحنی آشام اجباری می باشد و به Swi (نقطه شروع فرایند آشام) و فرایند جابجایی بستگی دارد.

تذکر: دقت شود که در این مثال فقط نیروهای موئینگی را در نظر گرفتیم و نیروهایی مثل ویسکوز و گرانش را در نظر نگرفتیم.


سه تعریف اصلی برای اشباع نفت باقیمانده وجود دارد:

1- اشباع نفت باقیمانده حقیقی (true residual oil saturation - Srot): اشباع نهایی نفت در سطح میکروسکوپی که می توان به آن دست یافت به شرط اینکه اثر نیروهای ویسکوز، موئینگی و گرانش را در نظر بگیریم.

2- اشباع نفت باقیمانده (Remaining Oil Saturation - ROS): این اشباع در زمان پایان عمر یک میدان و در درون حفراتی که با آب در تماس هستند و بوسیله آب جاروب شده اند، بدست می آید. مقدار این اشباع به اشباع نفت باقیمانده حقیقی، جاروب میکروسکوپی، راندمان جاروب ناحیه ای (areal sweep efficiency) و تعداد pore volume هایی که به داخل حفرات تزریق کرده ایم بستگی دارد. مقدار این اشباع در نواحی مختلف مخزن متفاوت است، برای مثال مقدار ROS نزدیک چاه تزریقی کمتر از مقدار ROS در نزدیک چاه تولیدی می باشد.

3- اشباع نفت باقیمانده (Srow): مقدار نهایی اشباع نفت که از آزمایش های سیلاب زنی در آزمایشگاه بدست می آید و به دبی اعمالی (یا اختلاف فشار)، اثر انتهایی موئینگی (capillary end effect) و روش انجام تست بستگی دارد.


ترشوندگی تأثیری زیادی بر روی Sro می گذارد. برای سنگ هایی که کیفیت یکسانی دارند، سنگی که neutral wet (یا intermediate) باشد دارای Sro کمتری نسبت به سنگ شدیداً آب-دوست (strongly water-wet) می باشد. بنابراین مقدار بازیافت در سنگ هایی که دارای ترشوندگی متوسط هستند، زیاد است.


منبع: Core Analysis: A Best Practice Guide

۱ نظر ۱۷ ارديبهشت ۹۵ ، ۲۳:۱۸
صادق سلمانی